The effect of testing parameter variations on the in-vitro activity of iclaprim against Staphylococcus aureus

L. M. Koeth¹, S. Hawser², K. Islam², J. Difranco¹

¹Lab. Specialists, Inc., Westlake, USA, ²Arpida AG, Reinach, Switzerland.

ABSTRACT

Background: Iclaprim is a novel diaminopyrimidine antibiotic that exhibits potent bactericidal activity against major Gram-positive pathogens, notably including MRSA. This study aimed to determine effect of various testing parameters on the in-vitro activity of iclaprim against S. aureus.

Method: 10 S. aureus strains (4 MSSA and 6 MRSA including 2 VISA) and quality control strain S. aureus ATCC 29213 were tested. CLSI broth microdilution (BMD; using cation adjusted Mueller Hinton and Isosensitest broth), macrodilution and agar dilution (using Mueller Hinton Isosensitest agars) MICs were determined in triplicate for each strain using trimethoprim as a class comparator. A total of 10 testing variables (incubation temperature and time, incubation in CO², inoculum concentration, calcium, magnesium, pH, serum and polysorbate-80) were also studied using CLSI BMD method.

Results: There was good correlation of iclaprim MICs by microbroth and macrobroth methods. MHA dilution MICs were slightly lower than CAMHB MICs by approximately one dilution. Iclaprim MICs were only slightly impacted by the addition of plasma and broth pH of 5.5, but were most impacted by addition of serum. Incubation at 48 hours, at 30°C and 40°C, using an inoculum concentration of 107cfu/mL had a slight effect (1-2 dilutions). All other variables tested did not significantly impact S. aureus MIC results (within \pm 1 dilution).

Method variation	Mean MIC (µg/mL) of CLSI reference and method variation (Test), n = 30			
	Reference	Test		
30°C	0.1436	0.0474		
40°C	0.1436	0.2679		
48 hrs	0.1340	0.2939		
10 ⁷ CFU	0.1104	0.2308		
pH 5.5	0.077	0.3232		
Serum, 25%	0.1279	0.5		
Serum, 50%	0.1279	1		
Plasma, 50%	0.1039	0.3223		

Conclusions: When performing susceptibility testing with iclaprim, it is important to control the pH of the media, the incubation temperature, inoculum concentration and media pH to avoid slight variations in MICs and to be aware that the addition of serum can have a greater effect on the MICs.

Iclaprim is a novel investigational drug that is being developed for serious Gram-positive bacterial infections. The compound has been granted fast-track product designation and has recently completed two pivotal Phase III clinical studies in complicated skin and skin structures infections (cSSSI). In order to assure accurate and reproducible in vitro susceptibility results for a new antimicrobial agent, the effects of various testing factors should be known. The MICs of iclaprim were compared for different reference MIC methods and media, and by broth microdilution with modifications of select variables for 10 Staphylococcus aureus strains and a quality control strain, S. aureus (ATCC 29213). Broth macrodilution, broth microdilution and agar dilution MICs were determined using both Mueller Hinton and Isosensitest media. In addition, MIC testing was performed by broth microdilution with modifications to incubation temperature, time, atmospheric conditions, inoculum concentration, calcium, magnesium, pH, and with addition of Oserum, plasma and wetting agent, polysorbate 80 (P80).

METHODS

Media:

Media	Supplier
Cation Adjusted Mueller Hinton Broth (CAMHB)	Becton Dickinson
Mueller Hinton Broth (MHB)	Becton Dickinson
IsoSensitest Broth (ISB)	Oxoid
Mueller Hinton Agar (MHA)	Becton Dickinson
IsoSensitest Agar (ISA)	Oxoid

MIC Methods:

INTRODUCTION

tibiotic	Concentrations
prim	0.015–16 mg/L

Microorganisms:

 10 S. aureus strains (4 MRSA, 2 VISA, 4 MSSA) • QC: S. aureus ATCC 29213 (CLSI QC Range: 0.03–0.12 mg/L)

According to CLSI procedures with exception of additional testing using ISA and ISB

- 1. Broth microdilution (CAMHB and ISB; trays were made daily)
- 2. Broth macrodilution (CAMHB)
- 3. Agar dilution (MHA and ISA; plates were made no more than 4 days prior to use and stored at 2–8°C)
- 4. Broth microdilution (modification of test variables; see Table 1)

Inoculum counts were performed for each isolate tested. Quality control strain, lower than reference MICs) S. aureus ATCC 29213, was tested on each day of testing.

Table 1. Variables studied by broth microdilution.

Variable description	Supplementation (stock)	Specific variables tested	
Temperature		30, 35 and 40°C	
Incubation time		16, 18, 20, 24 and 48 hrs	
Atmospheric conditions		Ambient, 5% and 10% CO_2	
Inoculum		10 ⁴ , 10 ⁵ , 10 ⁶ and 10 ⁷ CFU/mL	
Calcium	0.1 M CaCl ₂	4.9, 26.9, 54.2 and 98.1 mg/L	
Magnesium	10,000 meq/L MgCl ₂	3.95, 10.2 and 23.4 mg/L	
рН	10% Acetic acid, 2.5M NaOH	5.5, 6.5, 7.4 and 8.5	
Serum	Pooled normal human serum	25% and 50%	
Plasma	Pooled human plasma	25% and 50%	
Polysorbate 80		0.002%	

RESULTS

Broth microdilution, broth macrodilution and agar dilution (Table 2 & Figure 1)

- Broth macrodilution and broth microdilution (ISA) mean MICs were within one doubling dilution to broth microdilution (MHB) reference mean MICs.
- Iclaprim agar dilution (MHA) MICs were slightly lower than reference microdilution MICs but within one doubling dilution.
- Iclaprim agar dilution (ISA) were lower than reference microdilution MICs by 1–2 doubling dilutions.

Broth microdilution: effect of testing variables (Tables 3 & 4 and Figure 1)

The majority of all MICs were within one doubling dilution compared to the reference MICs. The variables that slightly impacted the MICs were incubation temperature, 48 hr incubation, inoculum concentration of 107 CFU/mL, broth pH of 5.5, and plasma. MICs were more affected by the addition of 50% serum.

Table 2. Broth microdilution variables.

Broth microdilution variables				
Temperature	30°C	1.5 dilutions lower		
	40°C	1 dilution higher		
 Incubation Time 	48 hrs	1 dilution higher		
 Inoculum 	10 ⁷ CFU/mL	1 dilution higher		
• pH	5.5	2 dilutions higher		
 Plasma 	25%	1 dilution higher		
	50%	1.5 dilutions higher		
Serum	25%	2 dilutions higher		
	50%	3 dilutions higher		

An initial single MIC determination by broth microdilution using CAMHB was Based on a subset of eight S. aureus strains, there was no significant impact Figure1.MeaniclaprimMICs(mg/L)against10S.aureusstrains(3replicateseach)for performed for each strain. Then triplicate testing was performed by of P80 at a concentration of 0.002% on the *in vitro* activity of iclaprim (MICs each method variation. all methods/media, utilizing the same initial inoculum for all methods. for four strains were similar and MICs for four strains were one dilution

> **Table 3.** In-vitro activity of iclaprim against 10 S. aureus strains as determined by broth microdilution, macrodilution and agar dilution methodologies.

Reference	method	Comparative method		Comparative method – CLSI reference method		
Method (media)	Mean MIC	Method (media)	Mean MIC	Mean MIC difference*	n (%) ±1 dilution**	n (%) ±2 dilution*
Broth microdilution 0.122 ⁻ (CAMHB)		Macrodilution (CAMHB)	0.0926	-0.0296	28 (93.3)	30 (100)
	0.1221	Agar dilution (MHA)	0.0769	-0.0452	30 (100)	30 (100)
		Broth microdilution (ISB)	0.0825	-0.0397	30 (100)	30 (100)
Agar dilution (MHA)	0.0769	Agar dilution (ISA)	0.0474	-0.0296	30 (100)	30 (100)

* Mean difference in log, MICs, comparative method – CLSI reference method

Table 4. In vitro activity of iclaprim against 10 S. aureus strains – comparison of the CLSI MIC microbroth dilution reference condition with other testing conditions.

Test (CLSI reference condition)	Comparative condition	Mean difference*	n (%) ±1 dilution**	n (%) ±2 dilution**
Temperature: 35°C	30°C	-0.0962	10 (33.3)	30 (100)
VIEan IVIIC = 0.1436	40°C	0.1244	26 (86.7)	30 (100)
	16 hrs	-0.0324	30 (100)	30 (100)
Incubation time: 24 hrs	18 hrs	0.0000	30 (100)	30 (100)
Mean MIC = 0.1340	20 hrs	0.0063	30 (100)	30 (100)
	48 hrs	0.1599	24 (80)	30 (100)
Atmospheric: Ambient	5% CO ₂	0.0226	30 (100)	30 (100)
VIEan VIIC = 0.1114	10% CO ₂	0.0390	30 (100)	30 (100)
	10 ⁴ cfu/mL	-0.0096	27 (90)	27 (90)
Inoculum: 10⁵ cfu/mL Mean MIC = 0.1104	10 ⁶ cfu/mL	0.0115	26 (86.7)	26 (86.7)
	10 ⁷ cfu/mL	0.1203	24 (80)	24 (80)
	4.93 mg/L	0.0464	30 (100)	30 (100)
Calcium: 25 mg/L Mean MIC = 0.1114	54.19 mg/L	0.0464	30 (100)	30 (100)
	98.15 mg/L	0.0321	30 (100)	30 (100)
Magnesium: 10.2 mg/L	3.95 mg/L	0.0320	30 (100)	30 (100)
Mean MIC $= 0.1575$	23.4 mg/L	-0.0235	30 (100)	30 (100)
	5.5	0.2454	1 (3.3)	26 (86.6)
pH: 7.4 Mean MIC = 0.0770	6.5	0.0424	29 (96.6)	30 (100)
	8.5	-0.0052	30 (100)	30 (100)
Serum: none	25%	0.3721	4 (13.3)	23 (76.6)
Mean MIC = 0.1279	50%	0.8721	0 (0)	4 (13.3)
Plasma: none	25%	0.0945	28 (93.3)	30 (100)
Mean MIC = 0.1039	50%	0.2184	13 (43.3)	28 (93.3)

Mean difference in log, MICs, comparative condition - CLSI reference

* Number and percentage of MICs by the two methods within ± 1 (± 2) doubling dilutions of each other Mean difference is $> \pm 1$ dilution from reference mean

90% of MICs are within ± 1 dilution from reference

CONCLUSIONS

- → There was good correlation of iclaprim MICs by microbroth and macrobroth methods.
- Iclaprim agar dilution MICs were slightly lower (1–2 dilutions) compared with broth MICs.
- Iclaprim MICs were most affected by the addition of 50% serum, but notably less with the addition of plasma.
- Incubation for 48 hrs, at 30°C and 40°C, using an inoculum concentration of 10⁷ CFU/mL, broth pH of 5.5, addition of plasma and of 25% serum had a slight impact (1–2 dilutions) on iclaprim MICs.
- → Other variables tested did not have a significant
 → effect on iclaprim MICs.